An Erlang formula for the Internet

Jim Roberts
james.roberts@inria.fr
14 February 2011
The failure of Poisson modeling?

• "Wide area traffic: the failure of Poisson modeling"
 - V. Paxson and S. Floyd, Sigcomm 1994
 - cited in 3898 papers since
• packet and TCP connection arrival processes are self-similar
 - no simple models! no simple formulas!
• but ... session arrivals in the busy period are Poisson

from Leland et al., IEEE ToN, 1994
Erlang and the Internet?
The Erlang formula
The Erlang loss formula

• assuming
 - Poisson call arrivals at rate \(\lambda \)
 - independent holding times of mean \(h \)
 - full accessibility to \(N \) trunks
 - lost calls cleared
• the probability of blocking is

\[
B = \frac{A^N / N!}{\sum_{i=0}^{N} A^i / i!}
\]

 - where \(A = \lambda \times h \) is the offered traffic
• an example of the capacity-demand-performance relation, essential for all engineering
Lessons from the Erlang formula

• performance is insensitive to the holding time distribution
• the essential traffic characteristic is $A (= \lambda \times h)$, the offered traffic or expected demand
• the network realizes scale economies
 - admissible load for given blocking increases with capacity

![Graph showing admissible load vs. capacity for different values of B]
The Erlang formula is not all we need...

- a simple utilization limit (e.g., $A/N < 80\%$) suffices for large N
- use the Engset formula for limited traffic sources
- use approximations for
 - limited availability
 - overflow and dynamic routing
 - delay systems
 - repeat attempts
 - etc...
- ... but it underpins our understanding of what is essential for network engineering and what traffic control objectives are reasonable and feasible
Useful generalizations
Poisson session arrivals

- sessions consist of a random number of calls interspersed by silent intervals
- assuming:
 - Poisson session arrivals
 - full accessibility to N trunks
 - blocked calls are cleared, the session proceeds with a new silence
- the probability of blocking is

\[
B = \frac{A^N / N!}{\sum_{i=0}^{N} A^i / i!}
\]
Poisson session arrivals

- Sessions consist of a random number of calls interspersed by silent intervals.
- Assuming:
 - Poisson session arrivals
 - Full accessibility to N trunks
 - Blocked calls are cleared, the session proceeds with a new silence.
- The probability of blocking is

\[
B = \frac{A^N / N!}{\sum_{i=0}^{N} A^i / i!}
\]
Poisson session arrivals

- sessions consist of a random number of calls interspersed by silent intervals
- assuming:
 - Poisson session arrivals
 - full accessibility to N trunks
 - blocked calls are cleared, the session proceeds with a new silence
- the probability of blocking is

\[
B = \frac{A^N / N!}{\sum_{i=0}^{N} A^i / i!}
\]

- for general, possibly correlated holding times and silences (cf. Bonald, 2006)
The multirate generalization

- the multirate loss system
 - connections with different constant bit rates \(\{c_i\} \)
 - Poisson traffics \(\{a_i\} \) where \(a_i = \lambda_i \times h_i \)
 - link of capacity \(C \)
- a product form steady state distribution \(\pi(n) \) and a recurrence relation for overall occupancy \(f(x) \) \((f(x) = \sum_{\{n: nc=x\}} \pi(n)) \)
- insensitive to connection holding time distribution and true for Poisson session traffic

\[
\pi(n) = \prod_i (a_i^{n_i} / n_i!) \pi(0)
\]

\[
xf(x) = \sum_i a_i d_i f(x - c_i) \text{ for } x \leq C
\]
Internet traffic
Internet traffic: packets, flows, sessions

- A flow is a succession of packets, local in time and place, corresponding to an instance of some application.
- Packet and flow arrivals are self-similar, but session arrivals are Poisson!
- If flows were constant rate we could use the multirate Erlang recursion to size links for "negligible congestion"
Internet traffic: packets, flows, sessions

- A flow is a succession of packets, local in time and place, corresponding to an instance of some application.
- Packet and flow arrivals are self-similar, but session arrivals are Poisson!
- If flows were relatively low rate, we could use the multirate Erlang recursion to size links for "negligible congestion".
- But Internet flows use TCP and have an "elastic" rate.
Traffic theory for elastic traffic

• assuming
 - Poisson flow arrivals at rate λ
 - independent flow sizes of mean σ
 - perfect fair sharing of link rate C
• the probability n flows are in progress is
 \[\pi(n) = \rho^n (1 - \rho) \]
 - where $\rho = \frac{\lambda \times \sigma}{C}$
• the expected flow rate is
 \[\gamma = C (1 - \rho) \]
• these results are true for a general flow size distribution
• they are also true for the general Poisson session traffic model
• but... most Internet flows cannot attain rate C
Accounting for limited flow rates

- assuming
 - Poisson session arrivals
 - flow rate \(\leq c \)
 - perfect fair sharing of link rate \(C \) when \(nc > C \)
- we readily derive state probabilities and mean flow rate
 - in particular, "probability of congestion" = \(\Pr[\text{flow rate} < c] \) is given by the Erlang delay formula

![Graphs showing loss and delay vs. capacity for different values of B and D.](image)
Accounting for a mix of limited flow rates

- assuming
 - Poisson session arrivals
 - class i flow rate \(\leq c_i \)
 - balanced fair sharing of link rate \(C \) when \(\Sigma n_i c_i > C \)
- we derive recurrence relations for relevant performance measures
 - extending the recurrence relations for the multirate Erlang model (cf. Bonald and Virtamo, 2005)
 - e.g., "probability of congestion" = \(\Pr[\text{class i flow rate} < c_i] = f^+/f^- + f^+ \)

where \(f^- = \Sigma_{n \leq C} f(x), \ f^+ = \Sigma_{n > C} f(x) \) and

\[
xf(x) = \sum_i a_i d_i f(x - c_i) \text{ for } x \leq C
\]
\[
Cf(x) = \sum_i a_i d_i f(x - c_i) \text{ for } x > C
\]
Discrepancies

• sharing is not balanced fair but max-min fair or proportional fair or...
 - but simulations show that performance does not depend critically on the fairness objective
• not all flows are elastic (e.g., streaming and conversational flows)
 - but high rate flows need to be adaptive ("TCP friendly"); assuming they are, it is conservative to suppose they are elastic (cf. Bonald & Proutière, 2004)
 - and the rate of low rate flows is hardly impacted by imposing fairness (especially max-min fairness)
• flow throughput depends on the network path
 - but $E[\text{throughput}] \approx \min_i \{c_i, C_i(1 - \rho_i)\}$ for links l in flow path
Candidate Erlang formulas for the Internet

- the probability of congestion = probability network link imposes rate reduction
 - by the multirate recurrence or an approximation based on the Erlang delay formula
- or some other balanced fair formula (cf. Bonald, 2010)?
- expected throughput $\approx \min_i \{c_i, C(1 - \rho_i)\}$
- or $Pr[\text{max-min fair rate} > p] < \varepsilon$ for given flow peak rate p and some tolerance ε
 - ensures all flows of rate $< p$ suffer negligible delay
- what matters is that we have capacity-demand-performance relations
 - as long as the network realizes some kind of per-flow fairness
Conclusions
Lessons from the Erlang formula for the Internet

• the **success** of Poisson modelling: performance depends essentially only on mean load and flow rate limits
• "fairness is good for you"!
 - impose (max-min) fairness in router queues
• performance deteriorates in overload
 - apply overload controls
• scale economies imply very limited scope for service differentiation
 - typically, all is good or all is bad!
Capacity-demand-performance

• understanding the capacity-demand-performance relation is paramount for successful engineering
• we have this relation for the Internet, assuming fair sharing between flows
 - the "Erlang formula(s) for the Internet"
• these relations demonstrate the limits and possibilities for meeting "service level agreements"
 - if flows can be reliably identified, sizing the network to meet performance targets is easy!

bit transport is a commodity
QoS is a scam!
References

• Bonald & Proutière, 2004
 - *On performance bounds for balanced fairness*
 Performance Evaluation 2004

• Bonald and Virtamo, 2005
 - *A recursive formula for multirate systems with elastic traffic*
 IEEE Communications Letters 2005

• Bonald, 2006
 - *The Erlang model with non-Poisson call arrivals*
 Proc. of SIGMETRICS / Performance 2006

• Bonald, 2010
 - *Habilitation à Diriger des Recherches*